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When imaging is performed by using a coherent signal, the result is frequently a realization of the stochastic process
known as speckle. The information sought from this process is often the mean value of its envelope or intensity at
each point in the image plane. When only a single realization of the process is available, ergodicity is required
within a sufficiently large region for accurate estimation of the mean. The identification of these regions is the
segmentation problem that is addressed. The approach presented clips the speckle image at a constant threshold
level and analyzes the resulting bilevel image based on the level-crossing statistics of the speckle process. An
analysis of the level-crossing process leads to a decision rule for identifying or segmenting distinct regions of the
image based on the sizes of the fades and the excursions in the clipped speckle. The measurement of these sizes is
accomplished by using the morphological transformations of opening and closing. This new approach has been
applied to computer-generated speckle images and may prove useful in laser, ultrasound, and radar imaging, in
which speckle phenomena are manifest.

1. INTRODUCTION

Implicit in our discussion is a model for image formation
that produces a stochastic process referred to in the litera-
ture as fully developed speckle. The first- and second-order
statistical properties of speckle are well known' and are
closely related to those encountered in the study of Gaussian
noise processes in statistical communications.2 There has
been recent interest in the statistical properties of clipped
speckle, arising from the reduced computational complexity
of working with 1-bit/pixel images.3 4 To date, the study of
clipped speckle has focused on the first- and second-order
statistical properties generated by clipping the trajectories
I(x) of a speckle process. Throughout this paper when we
refer to clipping, we mean hard clipping at a constant thresh-
old level u, defined as

U(X) o I I(X) (1)

The results that are presented here differ from previous
results related to the study of clipped speckle in that our
results are based on the level crossings of the envelope of a
Gaussian noise processes.5 6 Furthermore, the inferences
being made from the data differ in that we are not attempt-
ing to estimate parameters of the unclipped speckle process
but are instead segmenting an image based on the distribu-
tions of the random variables related to the level crossings,
given hypothesized distributions.

Our interest in speckle derives from research in biomedi-
cal imaging with ultrasound, for which it is necessary to
select homogeneous regions of interest for the estimation of
quantitative parameters such as the attenuation or back-
scattering coefficients of the tissues being imaged. 7 Since
ultrasound B scans of tissues such as liver are multiplicative-
ly contaminated with speckle noise, our goal is to segment an
image containing several regions differing only in their mean
intensities on the basis of that mean.8 ' 9 Once the images are

segmented, the desired quantitative parameters may then
be estimated in the regions identified as statistically homo-
geneous.

The rationale behind our approach can best be demon-
strated by using the image of Fig. 1(a), which contains two
Rayleigh distributed regions. The Rayleigh distribution

pv(V) = exp(- 2~;)v / U
v > 

(2)

otherwise

arises when the envelope of a complex Gaussian process is
considered, and its mean is given in terms of the parameter ,
as ju = (r/2)'I 2

,pl/
2 . Denote the interior, bright circular re-

gion in the image as R and the exterior region as Re, having
parameter3,9 Tm (the ) Tj
9 0 0 9 he exte1 imagtk



Vol. 8, No. 3/March 1991/J. Opt. Soc. Am. A 491

(a) (b)

(c) (d)

Fig. 1. Example of the segmentation process. (a) Synthetically
generated speckle pattern for which the mean of the exterior is 1.0
and the mean of the interior is 3.0. (b) Result of clipping (a) at the
maximum-likelihood decision point. (c) Closing of (b) with a circu-
lar structuring element of 15 pixels in diameter. (d) Opening of (c)
by a circular structuring element of 15 pixels in diameter.

results of the decision rule that may be enumerated as fol-
lows:

Case 1:
Case 2:
Case 3:
Case 4:

v e Re, de.
v E Re, di (false positive).
v E Ri, di.
v E Ri, de (false negative).

With no loss of generality, assume that J/e < qi Then the
cases 1 and 3 correspond to a correct decision. Case 4 corre-
sponds to the case for which the envelope faded below the
decision level u while in the brighter region Ri. Case 2, 
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the spectral properties of the function being clipped. Let
(t) be a stationary process having spectral representation

(t)= exp(jtX)d(X). (8)

Then the spectral moments are defined as

n= J X'dF(X), (9)

where (jd(r) 2 = dP(X)I). In the case when the power spec-
trum F(X) is absolutely continuous with power spectral den-
sity f(X) = F'(G) the Fourier relationship with the autocorre-
lation results:

r(t) = J f(X)exp(jtX)dX. (10)

Thus (0) = 21, and we define A = 2- X1
2, a scale factor

related to the bandwidth of the system. In the case of
ultrasound the relation between speckle size and system
parameters is given by Wagner et al.13

Assume that t(t) is a stationary Gaussian process and that
X2 is finite. The analytic envelope V(t) of t(t) has by defini-
tion a one-sided power spectrum and a Rayleigh distribu-
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Fig. 4. Log-likelihood ratio for a fade of normalized length x2 using the large ratios of means approximation for ratios 5.0 (solid curve), 10.0
(short-dashed curve), 100.0 (long dashed curve), 1000.0 (dotted-dashed curve).

where z = 2x2
2/7rx2 and x2 = (x 1Iu 2 )- Similarly, the limiting

form of the probability-density function of the length of
fades below a large level, obtained from Eq. (15), is

lim f(x) = 4 exp (- -x (28)
ul-. X 1 X 1

where x = (x flul). For the case for which the clipping
threshold is set to the maximum-likelihood decision point,
the log-likelihood ratio is plotted in Fig. 4 for several values
of r = (i2/1)/ 2
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The scalar multiplication of A by the scalar c is denoted as

cA = c xIx e A. (35)

The reflection of .A is the special case

A = - = -xIx e A}. (36)

Clearly if A is symmetric, then A1 = at.
The Minkowski sum of A and !B is defined as

A (D ={x+ylxe A,y M. (37)

It is easily shown that

A Al = U Ay = U Bx (38)
ye xG.A

The dilation of A by B is defined as the Minkowski sum A
e M. The effect of a Minkowski sum or a dilation of a set A
by a compact set S is to extend the boundaries of A, filling
in cavities. The set theoretic dual to the Minkowski addi-
tion, the Minkowski difference, is defined as

A e = l Ay, (39)
yeS

and the erosion of A by B is defined as the Minkowski
difference A e 3. The effect of a Minkowski subtraction or
erosion is to shrink the boundaries of A, producing smaller
fragments or eliminating them altogether.

An opening of a set A by a set B is defined as

.Ad = (A E) _t) ED B (40)

or, from Eqs. (39) and (38), as

-As== u n ~-A.Y (41)

which is the union of all the translates of B that are con-
tained in A. While the closing of A by - is the set theoretic
dual defined as

'A = (.A D ) E)e (42)

or, once again from Eqs. (39) and (38), as

JA3 = n U Ax, (43)
xEB yeB

which is the union of all the translates of !B that are con-
tained in the complement of A, i.e., the opening of the
complement of A.

In morphological filtering the set A usually denotes the
set formed from the image, and the set S, usually much
smaller than A, is referred to as a structuring element.

In our context, that of the segmentation of speckle, the
structuring element will be chosen to have the basic shape
and size of the postulated speckle distributions. Thus the
level-crossing analysis can be quickly implemented by using
the morphological closing and opening operations.

5. RESULTS

The results of Sections 2-4 may be applied to the simple case
for which we have an image composed of two speckle regions
having known parameters. For this purpose, software was

written to generate synthetic speckle images with known
parameters and contents. These images were constructed
by generating independent, zero-mean, white, unit-variance,
complex circular Gaussian variates that multiply some
mean-value pixels in a given image. The resulting image,
which models random scatterers of varying amplitude, is
then convolved with a two-dimensional function whose pa-
03 of 
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Fig. 5. Segmentation of a 256 X 256-pixel synthetic speckle image
with a circle of 128 pixels in diameter. The top row is the image
displayed with a logarithmic palette. The center row is the result of
thresholding at the maximum-likelihood decision point. The bot-
tom row displays the result of the segmentation algorithm with
known 






